Categorical Properties of Probabilistic Convergence Spaces
نویسندگان
چکیده
The purpose of this paper is to discuss some categorical properties of probabilistic convergence spaces. Its main theses are: (1) the construct P-PrTop of probabilistic pretopological spaces is the extensional topological hull of the construct FTPcs of FT -diagonal probabilistic convergence spaces for every triangular norm T ; (2) the construct P-PsTop of probabilistic pseudotopological spaces is the topological universe hull of FTPcs for every triangular norm T . Mathematics Subject Classifications (1991): 54A20 54B30 18B15 18B30.
منابع مشابه
A COMMON FRAMEWORK FOR LATTICE-VALUED, PROBABILISTIC AND APPROACH UNIFORM (CONVERGENCE) SPACES
We develop a general framework for various lattice-valued, probabilistic and approach uniform convergence spaces. To this end, we use the concept of $s$-stratified $LM$-filter, where $L$ and $M$ are suitable frames. A stratified $LMN$-uniform convergence tower is then a family of structures indexed by a quantale $N$. For different choices of $L,M$ and $N$ we obtain the lattice-valued, probabili...
متن کاملStrong $I^K$-Convergence in Probabilistic Metric Spaces
In this paper we introduce strong $I^K$-convergence of functions which is common generalization of strong $I^*$-convergence of functions in probabilistic metric spaces. We also define and study strong $I^{K}$-limit points of functions in same space.
متن کاملON STRATIFIED LATTICE-VALUED CONVERGENCE SPACES
In this paper we provide a common framework for different stratified $LM$-convergence spaces introduced recently. To this end, we slightly alter the definition of a stratified $LMN$-convergence tower space. We briefly discuss the categorical properties and show that the category of these spaces is a Cartesian closed and extensional topological category. We also study the relationship of our cat...
متن کاملCompletion of Semiuniform Convergence Spaces
Semiuniform convergence spaces form a common generalization of lter spaces (including symmetric convergence spaces and thus symmetric topological spaces] as well as Cauchy spaces) and uniform limit spaces (including uniform spaces) with many convenient properties such as cartesian closedness, hereditariness and the fact that products of quotients are quotients. Here, for each semiuniform conver...
متن کاملOn some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces
In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Categorical Structures
دوره 6 شماره
صفحات -
تاریخ انتشار 1998